Satellite Oceanography Lab

Ebenezer Nyadjro
US Naval Research Lab/
University of New Orleans

UG-DMFS Summer Program (AUGUST 1-5, 2016)
Remote Sensing: Primary components

A. Energy Source
B. Radiation and Atmosphere
C. Interaction with target
D. Energy recorded by sensor
E. Transmission, reception, processing
F. Interpretation and analysis
G. Application of information
Data Sources

- National institutions that manage satellite data
 - National Aeronautics and Space Administration (NASA)
Data Sources

✓ National institutions that manage satellite data

--- National Oceanic and Atmospheric Administration (NOAA)
Data Sources

✓ National institutions that manage satellite data

--- US Geological Survey (USGS)
Data Sources

✓ National institutions that manage satellite data

--- European Space Agency (ESA)
Data Sources

✓ National institutions that manage satellite data

--- Monitoring for Environment and Security for Africa (MESA)
Satellite Data Processing
The information measured by a sensor is
- converted into digital format,
- stored on magnetic media, and
- transmitted to the ground receiving stations.

HRPT (High Resolution Picture Transmission) format enables transmission of raw information to the receiving stations located on the Earth's surface.

Each station includes receiving antenna and computer for processing and storage of information.

HRPT format is used in IR sensors AVHRR (Advanced Very High Resolution Radiometer) and optical scanners (e.g., SeaWiFS/ MODIS).
The storage capacity of magnetic media on board the satellite is crucial if a long time period is passed between the measurements and the transmission of obtained information to Earth. For example, in the case of SeaWiFS (launched in 1997) the satellite continuously transmits information in HRPT format to ground stations located along its orbit. The capacity of its "memory" is insufficient to store all the data collected during one day. That is why only 16-th part of information (each 4-th pixel in each 4-th row) is stored, transmitted to GSFC, processed there and disseminated to users. In more recently launched satellites (e.g., MODIS-Terra and MODIS-Aqua) the onboard storage capacity is much better.
Satellite Data Processing

Diagram showing the processing flow of satellite data, with connections between different centers and systems.

Key elements:
- TDRS and TRMM
- White Sands Complex
- GSFC
- LIS Level-0 Data
- CERES Level-0 Data
- MSFC
- LaRC
- Earth Observation Center
- Level-1, 2, 3 Processing of PR, TMI, VIRS
- TRMM Processing System
- EUS
- WWW Server (DRS)
- DDS
- Data Search & Download
- Local 1 ~ 3 Data of PR, TMI, VIRS
- User
- CRL
- JMA
- EORC

NASDA
Levels of data processing:

Level 0 – Raw data received from satellite, in standard binary form;

Level 1 – Image data in sensor coordinates, contain individual calibrated channels;

Level 2 – Derived oceanic variable, atmospherically corrected and geolocated, but presented in sensor coordinates;

Level 3 – Composite images of derived ocean variable resampled onto standard map base and averaged over a certain time period (may contain gaps);

Level 4 – Image representing an ocean variable averaged within each grid cell as a result of data analysis, e.g., modeling.
Satellite Data Processing

✓ Computer programing software: Matlab, Python, Ocean Data View,

✓ Specialized data software:
 -- NASA’s SeaDAS: ocean color
 -- ESA’s BEAM – ocean color, SAR, etc
 -- UNESCO’s Bilko - ocean color, SMOS
Data dissemination

The method of data dissemination depends on the purpose (commercial or research) they will be used.

In the first case (commercial use) the data are transmitted directly to ships and coastal receiving stations and then processed and analyzed there.

In the second case (scientific use) the data are processed in the large scientific centers and disseminated via Internet.

The processing requires sophisticated procedures of atmospheric correction, calibration and interpolation.
Remote sensing of the sea: Data usage

1. Sensor calibration
2. Atmospheric correction
3. Positional registration
4. Oceanographic sampling for “sea truth”
5. Image processing
6. Oceanographic applications of satellite Remote sensing
Application: Bathymetry and Navigation

- gravity map of ocean surface, computed from radar-altimetry and GRACE measurements.
- ocean surface is deformed by the varying gravitational attraction of the underlying marine topography
- such maps sensitively mirror seafloor features and have been valuable in finding previously uncharted seamounts, ridges, and fracture zones.
Maps of ocean currents, eddies, and winds are used in commercial shipping to optimize routes.
Cyclonic Flow: (flow around a low pressure center)

Clockwise in SH

Counterclockwise in NH
Fronts: air masses

- **Cold front**: cold, dry stable air is replacing warm, moist unstable air.

- **Warm front**: warm, moist unstable air is replacing cold dry stable air.

- **Stationary front**: boundary between the two air masses is not moving.

- **Occluded front**: when a cold front catches up with a warm front.

- **Symbols** on a map are in the direction of the air mass motion.
Fronts: water masses

SST fronts provide information on a variety of processes in the ocean:

--- Enhanced gradients of:
- temperature
- density

- affects air-sea interaction
- heat and salt transport
- ecosystem functioning
Application: ATSR image of the Nile Delta

The Nile Delta, Egypt, and the Mediterranean Sea on 9th May 1992

- clouds
- warm shallow water at a temperature of around 17 °C
Fronts: water masses

SST fronts provide information on a variety of processes in the ocean:

--- Enhanced gradients of:
• temperature
• density

• affects air-sea interaction
• heat and salt transport
• ecosystem functioning
Influence of tropical cyclones on Chlorophyll-a

Chlorophyll-α concentrations (mg m⁻³) from IRS-P4 (OCEANSAT-1) Ocean Color Monitor (OCM)
Water quality: Algal blooms

Coccolithophore blooms and Toxic algal blooms from SeaWiFS

Coccolithophore blooms shown via SeaWiFS
Extensive patches of high reflectance blooms

source: SeaSpace (http://www.seaspace.com/main/derived_samples/oceanographic.html)
Water quality: Algal blooms

Bloom in southern Africa

An algae bloom off the southern coast of England in 1999 as observed from satellite
Water quality: Oil spill
Multi-satellite application: Oil spill

Gulf of Mexico Deepwater Horizon oil spill (Apr-Jul 2010): SST (background image), oil spill (black stain) from SAR sensors on Radarsat-2 satellite, pumped away by the Loop Current from altimetry (black arrows).
Satellite data and fisheries

• Habitat Classification: SST, SSH, ocean color, ocean winds and sea ice

• Info: ocean fronts, eddies, convergence zones, river plumes and coastal regions,

Chl map: potential productive zones
Satellite data and fisheries

- Habitat Classification: SST, SSH, ocean color, ocean winds and sea ice
- Info: ocean fronts, eddies, convergence zones, river plumes and coastal regions,

Satellite data and fisheries

Assessing the viability of a fishing ground
Multi-satellite application

NW Pacific biophysical info from multiple satellite products
Application: Special Events - El Nino and La Nina

AVHRR Ocean pathfinder SST anomalies
Fig. 6 Normally, the trade winds and strong equatorial currents flow toward the west. At the same time, an intense Peruvian current causes upwelling of cold water along the west coast of South America.
El Niño – Southern Oscillation (ENSO)
ENSO: stages

23 OCT 97
Full El Nino condition

14 Mar 98
El Nino retreating

8 NOV 98
Full La Nina condition

18 JUNE 99
La Nina fading
Topex/Poseidon Sea Level Deviation

- July 96 Normal
- July 97 El Niño
- July 98 La Niña

ERNO

- Topex-Poseidon Sea-Surface Height Anomaly
TRMM Satellite-Rain measurements

Rain rate

Atmospheric water vapor

SST
NASA
ftp://podaac-ftp.jpl.nasa.gov/allData/

CNES

NOAA
http://www.ncdc.noaa.gov/data-access/satellite-data/satellite-data-access-datasets

ESA
http://marine.copernicus.eu/

IFREMER
http://wwz.ifremer.fr/institut_eng/Marine-science/French-facilities/Data-Centres/Coriolis
SANSA
http://www.sansa.org.za/

MESA
http://www.ug-mesa.org/

Individual Universities and Labs
e.g. University of Hawaii
http://apdrc.soest.hawaii.edu/data/data.php
Upwelling
Background: Upwelling

- Thermocline inhibits exchange of surface and subsurface waters.
- High nutrient-rich waters are locked up in subsurface waters.
Background: Upwelling

- Cold nutrient-rich waters are brought into the surface ocean through upwelling.

- Indicators: low SST, low oxygen, high nutrients and increased primary productivity.
How it works

• Wind + Coriolis force
• N-hemisphere: right of wind direction
• S-hemisphere: left of wind direction
• “gaps” are filled with water from below: upwelling

Methods:

Ekman transport: \[M = \frac{\tau}{\rho_0 f} \] units = m² s⁻¹

Ekman pumping velocity: \[w_e = \frac{1}{\rho_0 f} \nabla \times \tau \] units = m s⁻¹

Compare the two: \(M/R; R \sim 70-100 \text{ km} \)

Upwelling Index: \(\text{UI}_{ET} \) and \(\text{UI}_{SST} \)

Methods:

Ekman pumping velocity:

\[w_e = \frac{1}{\rho_o f} \nabla \times \tau \]

units = m s\(^{-1}\)

Wind stress curl

\[\nabla \times \tau = \frac{\partial \tau_y}{\partial x} - \frac{\partial \tau_x}{\partial y} \]