1. Diffusion

a) It is desired to evaluate changes in salt concentration (salinity) in a quiescent tank of water 10 m deep in which a salinity gradient has been established in the vertical direction. The tank is not stirred and is completely sealed from its surroundings (no water or salt is added or taken away). Estimate the time required for the gradient to be smoothed by molecular diffusion (molecular diffusivity for salt in water is 10^{-9} cm2/s). Does the magnitude of the initial gradient make any difference?

Pure diffusion process so

$$ L = \sqrt{D \tau} $$

The time it takes is then 10^{11}s. No effect of initial gradient.

b) What if we are looking at heat diffusion thru the same tank? The thermal diffusivity for water is 10^{-7} m2/s. How long does it take now?

c) If turbulence is present, what will be the time for the gradient to be smoothed out? Assume a turbulent diffusivity of 10^{-5}m2/s.

2. Diffusion versus turbulence

Qualitatively show the radial profiles of velocity, temperature, and concentration for an axisymmetric heated jet of fluid A (sewage discharge in a well mixed bay for example), introduced into quiescent ambient fluid B. Assume $D > \alpha > \nu$, where D and α are mass and thermal diffusion coefficients, respectively, and ν is the kinematic viscosity. Make 2 separate plots at $x/d = 0.5$ and $x/d = 30$.

At that location, mixing dominated by diffusion.

At $x = 0.5$, shear layer has not rolled up yet.

At $x = 30$, mixing controlled by length scale eddies with little effect from diffusion.
3. Momentum versus buoyancy

Using a beaker, we will create a vertical jet (with a syringe) and a vertical plume (different density fluid) and look at the difference in spatial spreading and speed in both cases. Also notice the difference in eddy structure as the flow moves downstream.

Demonstrate thru dimensional analysis the relationship between width/spread and centerline velocity as a function of time and downstream distance for jets versus plumes.
3-D JETS

\[T = \rho U^2 f^2 \]

\[2 \pi \text{ No other length scale} \]

\[T = \rho U^2 f^2 = \rho \frac{f^2 f^2}{t^2} \]

\[\frac{T}{\rho} = \frac{f^2}{t^2} \rightarrow f \sim \left(\frac{T}{\rho} \right)^{1/4} t^{-1/2} \]

\[U \frac{f^2}{t} \sim \left(\frac{T}{\rho} \right)^{1/4} t^{-1/2} \]

\[T = \rho U^2 x^2 \]

\[U^2 = \frac{f}{\rho} \frac{1}{x^2} \rightarrow U \sim \left(\frac{T}{\rho} \right)^{1/2} \frac{1}{x} \]

Reynolds role: \[\frac{U}{f} \sim \frac{\left(\frac{T}{\rho} \right)^{1/4} t^{-1/2}}{\left(\frac{T}{\rho} \right)^{1/4} t^{1/2}} \sim \frac{1}{t} \]
Flume

\[F = \pi d^2 \rho_c w_0 \]

But only \(F = \rho_c w S \)

\[\rho' = \rho \frac{g}{c} \quad \text{Re} = \frac{\rho' d^3}{\nu} \]

\[\frac{w^2}{\rho' d} \quad \rho' = \frac{w^2}{f} \]

\[F = \frac{w^2 w'd^2}{2} \quad \rho' \frac{w^3}{d} = \frac{w^3 d}{\pi} \quad \rho' \frac{w^3}{d} = \frac{F^{2/3}}{f} \]

\[\frac{F}{t} = \frac{w^3}{\tau} \quad \frac{w}{F^{1/3} t^{-1/3}} \]

\[\rho' = \frac{F^{2/3} t^{-2/3}}{d} \quad \rho' = \frac{F^{2/3} t^{-2/3}}{d} \]

[Handwritten mathematical equations and formulas related to fluid dynamics in a flume.]