Pollution in the Lagos Lagoon, Nigeria

Ngozi Oguguah1, Temitope Sogbanmu2, Olalekan Isioye3, Olawale Awe4 and Christian Buckingham5

1Marine Biology Section, Dept. of Fisheries Resources, Nigerian Institute for Oceanography & Marine Research, Lagos, Nigeria.
2Ecotoxicology and Conservation Unit, Department of Zoology, University of Lagos, Nigeria
3Department of Geomatics, Faculty of Environmental Design, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
4Applied Statistics, Department of Mathematical Sciences, Anchor University, Ayobo, Lagos, Nigeria
5British Antarctic Survey, Cambridge, United Kingdom

Date: August 4, 2018

Presented at COESSING 2018, University of Ghana, Accra, Ghana.
Background

• The **Lagos Lagoon (LL)** is the **largest lagoon system in West Africa (WA)** (Alo et al., 2014).

• Located between latitude 6°27´ to 6°48´N and longitude 3°23´ to 3°40´E.

• One of the **most anthropogenically impacted lagoons in WA**.

• Anthropogenic influences include:
 • shipping /port activities
 • petroleum tank farms
 • saw mills
 • pharmaceutical industries
 • coastal development
Justification

• The current use of ground *in situ* measurements have limited sampling and or observation points, and often suffer from large data gaps.

• **Space based techniques** which includes high spatio-temporal resolution, low cost (mostly free), and all weather capabilities are advantageous.
Objective

• To show the impact of polluting activities on the LL ecosystem over spatio-temporal time scales.

• To use satellite imageries/observations to provide spatio-temporal context to sparse in-situ measurements of heavy metals and hydrocarbon concentrations.
Methods & Results

METHODS:

- We obtained *geostationary satellite images* from the SEVIRI sensor onboard Meteosat Second Generation (MSG-2), (see supporting documentation),
- We used *Python® programming language* to demonstrate the capability of reading NetCDF files,
- We generated animation of *sea surface temperature (SST)* near Nigeria.

RESULTS:

- Below, we show a *simple animation*.
- Each frame is 1 hr starting on 2018/08/02 at 00:00 UTC.
Animation Made within Python®
Figure 1: Station Locations - Estimates of Heavy Metals
Pollution in the Lagos Lagoon

Figures 2a-f: Anthropogenic Activities at Okobaba (2a-c) and Apapa (2d-f) Areas of the Lagos Lagoon, Nigeria

Source: Figures 2a (Ogunkoya, 2018), 2b (Adeyeye, 2017), 2c (Sogbanmu et al., 2017), 2d-f (Amaeze et al., 2015a)
Future Studies

• Obtain different satellite products and examine over Lagos Lagoon
 • Nigersat-2
 • Geosynchronous satellite (dt = 15 min), similar to MSG-2
 • Visible and infrared
 • https://directory.eoportal.org/web/eoportal/satellite-missions/n/nigeriasat-2
 • chlorophyll concentration – MODIS, VIIRS
 • visible and infrared spectrum – MODIS, VIIRS, Landsat 8
 • synthetic aperture radar (SAR) – Sentinel

• The secondary set of satellites should provide measurements relevant to pollution (e.g. river run-off, sediment, oil slicks)

• Use these data to place sparse *in situ* measurements into context
Acknowledgements

• Python® programming software available within the Anaconda distribution:
 • https://anaconda.org/anaconda

• The satellite data were obtained as follows:
 • Register an account at http://cersat.ifremer.fr/data/collections/o-si-saf (free and instantaneous)
 • Log on to the File Transfer Protocol (FTP) server at http://eftp.ifremer.fr
 • cd to the directory “cersat-rt/project/osi-saf/data/sst/l3c/seviri”

• We thank Stephane Saux Picart (Meteo-France) for helping with geosynchronous satellite data.
Thank you for your attention!